
Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences
© 2022, released under CC BY-SA

CS 4530 Software Engineering
Lecture 9.2: Strategies for Engineering Distributed Software

http://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe partitioning and replication as building blocks for 
distributed systems

• Evaluate the trade-offs between consistency and availability in 
distributed systems

• Answer the question: how does partitioning and replication help us 
satisfy requirements for distributed systems?



Recap: Why expand to distributed systems?

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada



How do we organize our distributed system?

• This depends to a large degree on whether there is shared state

• Usually, there is some shared state

• How important is it to synchronize?

• What about our DNS example?

• Domains can be split (e.g., .com, .edu, .info, .eu, .jp, …)

• Huge volume of requests – multiple nodes need to provide the same 
mappings, consistently



Idea: break apart responsibility for each part of a domain name (zone) to a 
different group of servers

How to organize DNS

Root servers

com org net edu uk jp

northeasternbu mit

khoury
Each zone is a continuous section of name space
Each zone has an associate set of name servers



Idea: break apart responsibility for each part of a domain name (zone) to a 
different group of servers

How to organize DNS

Root servers

com org net edu uk jp

northeasternbu mit

khoury
Each zone is a continuous section of name space
Each zone has an associate set of name servers

In other words, we partition the domain names 
according to the top-level domain.



Recurring Solution #1: Partitioning

• Partitioning is a common strategy to distributing a system and its data

• Starting from a non-distributed system:

A B

All accesses go to single server



Recurring Solution #1: Partitioning
• Divide data up in some (hopefully logical) way

• Makes it easier to process data concurrently (cheaper reads) 

A
[0…1
00]

B 
[A…N]

A
[101.. 
200]

B 
[O…Z]

Each server has 50% of data, limits 
amount of processing per server. 

Even if 1 server goes down, still have 
50% of the data online.



Partitioning DNS

org comedu govnet

northeastern

www

www

uk

root-servers

www

Global
Layer

Administrational
Layer

Managerial
Layer

9

Root Servers

khoury



DNS: Example
What might a request look like in practice?

Local DNS Server Root

.edu

neu.edu

khoury.neu.edu

course.khoury.neu.edu

course.khoury.neu.edu

ns.edu

course.khoury.neu.edu

ns1.neu.edu

course.khoury.neu.edu

ns1.khoury.neu.edu

course.khoury.neu.edu
129.10.117.35

129.10.117.35

129.10.117.35



How to deal with volume?

• We successfully distributed requests following the hierarchical nature of 
domain names

• However, e.g., .com is a very popular TLD – there might be (hundreds of) 
thousands of requests happening at any given time

• We may need several nodes just servicing .com

• This leads to replication



Recurring Solution #2: Replication

• Goal: Any node should be able to process any request

• Again, starting from a non-distributed system:

A B

All accesses go to single server



Recurring Solution #2: Replication

A B

Entire data set is copied

A B



Recurring Solution #2: Replication

• Improves performance:

• Client load can be evenly shared between servers

• Reduces latency: can place copies of data nearer to clients

• Improves availability:

• One replica fails, still can serve all requests from other replicas



• 13 root servers
• [a-m].root-servers.org

• E.g., d.root-servers.org

• Handled by 12 distinct entities
• (“a” and “j”) are both Verisign
• Don’t ask why.

Replication in DNS – Root Servers
Verisign, Inc. a

Information Sciences Institute b

Cogent Communications c

University of Maryland d

NASA Ames Research Center e

Internet Systems Consortium, Inc. f

U.S. DOD Network Information Center g

U.S. Army Research Lab h

Netnod i

Verisign, Inc. j

RIPE NCC k

ICANN l

WIDE Project m



• 13 root servers
• [a-m].root-servers.org

• E.g., d.root-servers.org

• But each root server has multiple copies of the database, which need to be kept 
in sync.

• Somewhere around 1500 replicas in total.

There is replication even within the 
root servers



Partitioning + Replication

• So, DNS combines both partitioning and replication

• As do most distributed systems

A B



Partitioning + Replication

A
[0…1
00]

B 
[A…N]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N]

A
[101.. 
200]

B 
[O…Z]



Partitioning + Replication
A

[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N

]

A
[101.. 
200]

B 
[O…Z]

DC NYC

LondonSF

A
[0…1
00]

B 
[A…N]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N]

A
[101.. 
200]

B 
[O…Z]

A
[0…1
00]

B 
[A…N]

A
[101.. 
200]

B 
[O…Z]



Replication Problem: Consistency
We probably want our system to work like this

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

5



Sequential Consistency
AKA: Behaves like a single machine would

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5



Availability
If at least one node is online, can we still answer a request?

A B A B

Set A=5

6 7 765

Read A

Set A=5



Consistent + Available
On timeout, assume node is crashed

A B A B

Set A=5

6 7 765

“OK”! “5”!

Set A=5

Read A

Assume 
replica failed



What if the network fails?

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume 

replica failed

Read A “6”!



Shared Fate
Are you still there?

• Two methods/threads/processes running on the 
same computer generally have shared fate 
[Crashed/not]

• When two machines in a distributed system 
can’t talk to each other, how do we know if the 
other is crashed?

• We call this a split brain problem



CAP Theorem: Consistency or Availability

• Pick two of three:

• Consistency: All nodes see the same data at the same time (strong 
consistency)

• Availability: Individual node failures do not prevent survivors from 
continuing to operate

• Partition tolerance: The system continues to operate despite message loss 
(from network and/or node failure)

• Can’t drop this for a DS - networks can always fail



Distributed Software Engineering Abstractions
Key Question: Consistency vs Availability

• Distributed system will never match exact semantics of non-distributed 
system

• For replication do we value more: guaranteed consistency (looks like a single 
machine) or guaranteed availability (sometimes read stale data)?

• For a lock server?

• For the order of tweets on twitter?

• For partitioning: Where can we draw the line?



Byzantine Faults
Unfortunately, still more things can go wrong

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”



Review: Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe partitioning and replication as building blocks for 
distributed systems

• Evaluate the tradeoffs between consistency and availability in 
distributed systems

• Answer the question: how does partitioning and replication help us 
satisfy requirements for distributed systems?


