CS 4530 Software Engineering

Lecture 9.2: Strategies for Engineering Distributed Software

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand

Khoury College of Computer Sciences
© 2022, released under CC BY-SA



http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe partitioning and replication as building blocks for
distributed systems

* Evaluate the trade-offs between consistency and availability In
distributed systems

* Answer the question: how does partitioning and replication help us
satisfy requirements for distributed systems??



Recap: Why expand to distributed systems?

* Scalability

* Performance
* Latency

* Availability

* Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada



How do we organize our distributed system?

* This depends to a large degree on whether there Is shared state
* Usually, there is some shared state
* How important is it to synchronize?
* What about our DNS example?
* Domains can be split (e.g., .com, .edu, .info, .eu, .jp, ...)

* Huge volume of requests — multiple nodes need to provide the same
mappings, consistently



How to organize DNS

|dea: break apart responsibility for each part of a domain name (zone) to a
different group of servers

Root servers

f — 7 *

com org net edu uk e

%\

bu northegastern Mit

Khoury

—ach zone Is a continuous section of name space
—ach zone has an associlate set of name servers




How to organize DNS

|dea: break apart responsibility for each part of a domain name (zone) to a
different group of servers

In other words, we partition the domain names
according to the top-level domain.



Recurring Solution #1: Partitioning

* Partitioning is a common strategy to distributing a system and its data

* Starting from a non-distributed system:

v vy wrreered

All accesses go to single server




Recurring Solution #1: Partitioning

* Divide data up in some (hopefully logical) way

* Makes it easier to process data concurrently (cheaper reads)

—ach server has 50% of data, limits
amount of processing per server.

—ven if 1 server goes down, still have
50% of the data online.




Partitioning DNS

Root Servers

Global
Layer

Administrational
Layer

Managerial
Layer




DNS: Example

What might a request look like in practice?
L ocal DNS Server Root

course.khoury. neu_edu

— 4T e B

A /ﬂsed/ m
course.khou 'y.ned-€au M s o 1

ury.neu. ei)
,heu. edu




How to deal with volume?

We successfully distributed requests following the hierarchical nature of
domain names

However, e.g., .com is a very popular TLD - there might be (hundreds of)
thousands of requests happening at any given time

We may need several nodes just servicing .com

This leads to replication



Recurring Solution #2: Replication

* Goal: Any node should be able to process any request

* Again, starting from a non-distributed system:

B
A
b Y

All accesses go to single server




Recurring Solution #2: Replication

Entire data set Is copled




Recurring Solution #2: Replication

* Improves performance:

* Client load can be evenly shared between servers

* Reduces latency: can place copies of data nearer to clients
* Improves availabillity:

* One replica fails, still can serve all requests from other replicas



Replication in DNS - Root Servers

Verisign, Inc.

Information Sciences Institute

* 13 root servers Cogent Communications
* [a-m] .root-servers.org University of Maryland
* E.g.,, d.root-servers.org NASA Ames Research Center
* Handled by 12 distinct entities Internet Systems Consortium, Inc.
* (“a” and “j”) are both VeFiSigﬂ U.S. DOD Network Information Center
* Don’t ask WhY- U.S. Army Research Lab
Netnod
Verisign, Inc.
RIPE NCC
ICANN

WIDE Project



There Is replication even within the
root servers

* 13 root servers

* [a-m] .root—-servers.org

* E.g., d.root-servers.orqg

* But each root server has multiple copies of the database, which need to be kept
IN sync.

* Somewhere around 1500 replicas in total.



Partitioning + Replication

* S0, DNS combines both partitioning and replication

* As do most distributed systems




Partitioning + Replication




Partitioning + Replication

Sk | ondon



Replication Problem: Consistency

We probably want our system to work like this




Sequential Consistency

AKA: Behaves like a single machine would




Availability

If at least one node is online, can we still answer a request?




Consistent + Available

On timeout, assume node is crashed

A

 replicatailed Ble==mtB|




What if the network fails?

"OK”| Read A “B”

Set A=5
= A e e
. replicatailed |




Shared Fate

Are you still there?

[Crashed/not]

* When two machines in a distributed system
can’t talk to each other, how do we know if the

same computer generally have shared fate 1
%
other is crashed?

* Two methods/threads/processes running onthe fee= - 88 . - _ e

* We call this a split brain problem

5
1
;
P
b 2 N
3 el o ¢
el '
. ‘
- .
A 4




CAP Theorem: Consistency or Availability

* Pick two of three:

* Consistency: All nodes see the same data at the same time (strong
consistency)

* Availablility: Individual node failures do not prevent survivors from
continuing to operate

* Partition tolerance: The system continues to operate despite message loss
(from network and/or node failure)

* Can’t drop this for a DS - networks can always fall



Distributed Software Engineering Abstractions

Key Question: Consistency vs Availability

* Distributed system will never match exact semantics of non-distributed
system

* For replication do we value more: guaranteed consistency (looks like a single
machine) or guaranteed availability (sometimes read stale data)?

* For alock server?
* For the order of tweets on twitter?

* For partitioning: Where can we draw the line?



Byzantine Faults

Unfortunately, still more things can go wrong

Set A=5 “«OK"| Read A ‘g

Set A=5

"OK!”




Review: Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe partitioning and replication as building blocks for
distributed systems

* Evaluate the tradeoffs between consistency and availability Iin
distributed systems

* Answer the question: how does partitioning and replication help us
satisfy requirements for distributed systems??



